Cosmic strings from the string theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L575
(http://iopscience.iop.org/0305-4470/26/13/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:50

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Cosmic strings from the string theory

Marek Rogatko
Institute of Physics, University of M Curie-Skłodowska, 20-105 Lublin, pl M Curie Skłodowskeij 1, Poland

Received 2 March 1993

Abstract

The possibility of obtaining the cylindrically symmetric solution in the case of low energy string theory is investigated.

The low energy limit of string theory gives a set of equations similar to Einstein's equations for metric tensor and other fundamental fields. Recently it has been shown that this theory admits solutions with the structure of an extended object surrounded by an event horizon, the so-called 'black-string' [1]. The 'black-string' solution was also used to find new solutions representing waves travelling on the 'black-string' background [2].

The four-dimensional low-energy action obtained from string theory has the form $[3,4]:$

$$
\begin{equation*}
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[-\frac{R}{\kappa^{2}}-2 \frac{(\nabla \phi)^{2}}{\kappa^{2}}-\frac{1}{2} \mathrm{e}^{-2 \phi} F^{2}\right] \tag{1}
\end{equation*}
$$

where $\kappa^{2}=8 \pi G, F_{\mu \nu}$ is the Maxwell field associated with a $U(1)$ subgroup of $E_{8} \times E_{s}$ or $\operatorname{spin}(32) / Z_{2}$. We set the remaining gauge fields to zero. ϕ is the dilation field. This case corresponds to the bosonic sector of the field-theory limit of the superstring model. Extremizing action with respect to the $\mathrm{U}(1)$ potential A_{μ}, ϕ and $g_{\mu \nu}$ one gets the following field equations:

$$
\begin{align*}
& \nabla_{\mu}\left(\mathrm{e}^{-2 \phi} F^{\mu \nu}\right)=0 \tag{2}\\
& \frac{\nabla^{2} \phi}{\kappa^{2}}+\frac{1}{4} \mathrm{e}^{-2 \phi} F^{2}=0 \tag{3}\\
& G_{\mu \nu}=-8 \pi \boldsymbol{T}_{\mu \nu} \tag{4}
\end{align*}
$$

where the energy-momentum tensor

$$
T^{\mu \nu}=\frac{2}{\sqrt{-g}} \delta S / \delta g_{\mu \nu}
$$

is given by:

$$
\begin{equation*}
T_{\mu \nu}=\mathrm{e}^{-2 \phi} F_{\mu \gamma} F_{\nu}^{\gamma}+g_{\mu \nu} \mathrm{e}^{-2 \phi} F^{2}-2 \nabla_{\mu} \phi \nabla_{\nu} \phi+g_{\mu \nu}(\nabla \phi)^{2} . \tag{5}
\end{equation*}
$$

The main subject of this letter is the investigation of the possibility of obtaining the cylindrically symmetric solution of the Einstein-Maxwell field coupled to the
dilation field and finding the main features of it. The most general static cylindrically symmetric has the following form:

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{e}^{2(\gamma-\psi)}\left(\mathrm{d} t^{2}-\mathrm{d} r^{2}\right)-\mathrm{e}^{2 \psi} \mathrm{~d} z^{2}-\alpha^{2} \mathrm{e}^{-2 \psi} \mathrm{~d} \phi^{2} \tag{6}
\end{equation*}
$$

where α, γ, ψ are only r-dependent. The Einstein field equations for this case are [5]:

$$
\begin{align*}
& \alpha^{\prime \prime}=-8 \pi G\left(T_{0}^{0}+T_{r}^{r}\right) \tag{7a}\\
& \left(\alpha \psi^{\prime}\right)^{\prime}=-4 \pi G\left(T_{0}^{0}+T_{r}^{r}+T_{\phi}^{\phi}-T_{z}^{z}\right) \tag{7b}\\
& \left(\alpha \gamma^{\prime}\right)^{\prime}=-8 \pi G\left(T_{r}^{r}+2 T_{\phi}^{\phi}\right) \tag{7c}\\
& -\gamma^{\prime \prime} \alpha=\alpha \psi^{\prime 2}+8 \pi G T_{\phi}^{\phi} \tag{7d}
\end{align*}
$$

A prime denotes a derivative with respect to r. In our case we assume that ϕ and A are only r-dependent and A has the z-directed component. If we assume that outside a radius r_{0} components of $T_{\mu \nu}$ are negligible then one obtains vacuum solutions of the form

$$
\begin{align*}
& \alpha(r)=k\left(r-r_{0}\right)+\alpha\left(r_{0}\right) \tag{8a}\\
& \gamma(r)=a \ln \alpha(r) / \alpha\left(r_{0}\right)+\gamma\left(r_{0}\right) \tag{8b}\\
& \psi(r)=-b \ln \alpha(r) / \alpha\left(r_{0}\right)+\psi\left(r_{0}\right) \tag{8c}
\end{align*}
$$

It is also convenient to define the quantities [6,7]:

$$
\begin{align*}
& T_{1}(r)=\int_{0}^{r}\left(T_{r}^{r}+T_{\phi}^{\phi}\right) \sqrt{-g} \mathrm{~d} r \tag{9a}\\
& \boldsymbol{T}_{2}(r)=\int_{0}^{r}\left(\boldsymbol{T}_{t}^{r}-\boldsymbol{T}_{z}^{z}\right) \sqrt{-g} \mathrm{~d} r \tag{9b}\\
& \boldsymbol{T}_{3}(r)=\int_{0}^{r}\left(\boldsymbol{T}_{r}^{r}-\boldsymbol{T}_{t}^{t}\right) \sqrt{-g} \mathrm{~d} r \tag{9c}
\end{align*}
$$

Denoting the $r \rightarrow \infty$ limit of $2 \pi r T_{i}(r)$ by τ_{i} we may express these parameters as:

$$
\begin{aligned}
& \alpha\left(r_{0}\right)=\int_{0}^{r_{0}}\left(1-8 \pi G T_{3}(r)\right) \mathrm{d} r \\
& k=1-4 \pi G \tau_{3}(r) \\
& \psi\left(r_{0}\right)=-4 \pi G \int_{0}^{r_{0}} \frac{\left[T_{1}(r)+T_{2}(r)\right]}{\alpha\left(r_{0}\right)} \mathrm{d} r \\
& b=2 G \frac{\left(\tau_{1}(r)+\tau_{2}(r)\right)}{k} \\
& \gamma\left(r_{0}\right)=-8 \pi G \int_{0}^{r_{0}} \frac{T_{1}(r)}{\alpha(r)} \mathrm{d} r \\
& a=-4 G \frac{\tau_{1}(r)}{k}
\end{aligned}
$$

where we used the boundary conditions $\alpha^{\prime}(0)=1, \gamma^{\prime}=\psi^{\prime}=0, \alpha(0)=\gamma(0)=\psi(0)=0$.
In general, relativity studies of line sources are motivated by their interesting features. Cosmic strings act as gravitational lenses. They double images of quasars and
may be seeds for accumulating matter in galaxy formations. It is interesting to analyse the solution, treated as the exterior spacetime of an analogue of the cosmic string, and it will not be amiss to ask about the familiar features in the above case. It could be easily shown that the 'local deficit angle' is of the form

$$
\begin{equation*}
\delta(r)=2 \pi\left(1-\frac{1}{\sqrt{-g_{r r}}} \frac{\partial}{\partial r} \sqrt{-g_{\phi \phi}}\right)=2 \pi\left[1-k \mathrm{e}^{-\gamma}(1+b)\right] . \tag{10}
\end{equation*}
$$

If we use the energy conservation law and set b equal to zero, one can see, in calculations to the first order, that $\delta(r)$ has no dependence on the impact parameter. Its value is $8 \pi G \mu$. This is the same result as for gauge strings in general relativity [8].

Another important question concerning this problem is the enquiry about the stability of the solution. In order to have a closer look at it, we recall the brilliant conception of K. Thorne, the C-energy. Integration equations (7) with respect to the first order in the dimensionless quantity $G \times$ (mass per unit length) and substituting the solutions of the equations for the C-energy per unit of standard length inside the cylinder and on the standard hypersurface t-constant, we get

$$
\begin{equation*}
E\left(r_{0}\right)=\int_{0}^{r_{0}} 2 \pi \tilde{r} X_{0}^{0} \mathrm{~d} r=\int_{0}^{r_{0}} \mathrm{e}^{-2 \gamma}\left[2 \mathrm{e}^{-2 \phi}\left(A_{z}^{\prime}\right)^{2}-\mathrm{e}^{2 \psi}\left(\phi^{\prime}\right)^{2}\right] 2 \pi \tilde{r} \mathrm{~d} \tilde{r} \tag{11}
\end{equation*}
$$

When fields appearing in the above equation fulfill the condition that the C-energy is non-negative, one does not hesitate to identify it with the classical energy [5]. Because the field configuration under consideration satisfies the classical variational equations of motion, it is located at a local minimum energy condition. So we draw the conclusion that the static string configuration is situated at a local C-energy minimum and is stable to small perturbations.

References

[1] Horowitz G and Strominger A 1991 Nucl. Phys. B 360197
Garfinkel D, Horowitz G and Strominger A 1991 Phys. Rev. D 433140
[2] Garfinkel D 1992 Phys. Rev. D 464286
[3] Gibbons G W and Maeda K 1988 Nucl. Phys. B 298741
[4] Steward N R 1991 Class. Quantum Grav. 81701
[5] Thorne K S 1965 Phys. Rev. 138251
[6] Hirdmarsh M and Wray A 1990 Phys. Lett. 2518498
[7] Moss I and Poletti S 1987 Phys. Lett. 199B 34
[8] Vilenkin A 1985 Phys. Rep. 121263

